Spiral Optimization Algorithm Using Periodic Descent Directions

نویسندگان

  • Kenichi TAMURA
  • Keiichiro YASUDA
چکیده

A few years ago, the authors proposed a nature-inspired metaheuristic concept, the spiral optimization algorithm, which was inspired by spiral phenomena in nature. The principal idea of the algorithm is to utilize spiral trajectories generated by multiple generalized spiral models for search applications. The generalized spiral model is composed of a spiral matrix defined by a composite rotation matrix and a convergence rate parameter. The setting of the spiral matrix with each initial point placement is important for its search performance, because it characterizes each spiral trajectory. This paper proposes 1) the concept of periodic descent directions for a spiral trajectory that is appropriate for optimization; 2) sufficient conditions, with examples, for the generalized spiral model to generate the periodic descent directions; 3) a setting method for the composite rotation matrix with initial search points to satisfy the conditions in the algorithm; and 4) a method for setting the convergence rate parameter to utilize the periodic descent directions effectively for its search performance. The effectiveness of the proposed method is confirmed by conducting numerical experiments under various conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new hybrid conjugate gradient algorithm for unconstrained optimization

In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...

متن کامل

A Free Line Search Steepest Descent Method for Solving Unconstrained Optimization Problems

In this paper, we solve unconstrained optimization problem using a free line search steepest descent method. First, we propose a double parameter scaled quasi Newton formula for calculating an approximation of the Hessian matrix. The approximation obtained from this formula is a positive definite matrix that is satisfied in the standard secant relation. We also show that the largest eigen value...

متن کامل

A Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei

In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...

متن کامل

IMRT Beam Angle Optimization Using Electromagnetism-Like Algorithm

The selection of appropriate beam irradiation directions in radiotherapy – beam angle optimization (BAO) problem – is very important for the quality of the treatment, both for improving tumor irradiation and for better organs sparing. However, the BAO problem is still not solved satisfactorily and, most of the time, beam directions continue to be manually selected in clinical practice which req...

متن کامل

A quasisecant method for minimizing nonsmooth functions

In this paper a new algorithm to locally minimize nonsmooth, nonconvex functions is developed. We introduce the notion of secants and quasisecants for nonsmooth functions. The quasisecants are applied to find descent directions of locally Lipschitz functions. We design a minimization algorithm which uses quasisecants to find descent directions. We prove that this algorithm converges to Clarke s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016